Descent and Interior-point Methods

Convexity and Optimization – Part III
Recension :
( 0 )
146 pages
Språk:
 English
This book contains a brief description of general descent methods and a detailed study of Newton's method and the important class of so-called self-concordant functions.
Det här är en gratis eBok för studerande
Skapa ett konto för gratis åtkomst
Alla läroböcker är gratis - för alltid. Mindre än 15 % reklam.
 
Prova gratis i 30 dagar
Business-prenumeration gratis de första 30 dagarna, sedan $5.99/månad
Senast tillagda
Om författaren

Lars-Åke Lindahl obtained his mathematical education at Uppsala University and Institut Mittag-Leffler and got a Ph.D. in Mathematics in 1971 with a thesis on Harmonic Analysis. Shortly thereafter he was employed as senior lecturer in Mathematics at Uppsala University, where he remained until his reti...

Description
Content

This third and final part of Convexity and Optimization discusses some optimization methods which, when carefully implemented, are efficient numerical optimization algorithms. We begin with a very brief general description of descent methods and then proceed to a detailed study of Newton's method. One chapter is devoted to self-concordant functions, and the convergence rate of Newton's method when applied to self-concordant functions is studied. We conclude by studying of the complexity of LP-problems.

  1. Descent methods
    1. General principles
    2. The gradient descent method
  2. Newton’s method
    1. Newton decrement and Newton direction
    2. Newton’s method
    3. Equality constraints
  3. Self-concordant functions
    1. Self-concordant functions
    2. Closed self-concordant functions
    3. Basic inequalities for the local seminorm
    4. Minimization
    5. Newton’s method for self-concordant functions
  4. The path-following method
    1. Barrier and central path
    2. Path-following methods
    3. The path-following method with self-concordant barrier
    4. Self-concordant barriers
    5. The path-following method
    6. LP problems
    7. Complexity