With the explosion of resources available on the internet, virtually anything can be learned on your own, using free online resources. Or can it, really? If you are looking for instructional videos to learn Calculus, you will probably have to sort through thousands of hits, navigate through videos of inconsistent quality and format, jump from one instructor to another, all this without written guidance.

This free e-book is a guide through a play-list of Calculus instructional videos. The play-list and the book are divided into 16 thematic learning modules. The format, level of details and rigor, and progression of topics are consistent with a semester long college level Calculus II course, the first volume covering the equivalent of a Calculus I course. The continuity of style should help you learn the material more consistently than jumping around the many options available on the internet. The book further provides simple summary of videos, written definitions and statements, worked out examples – even though fully step by step solutions are to be found in the videos – and an index.

The present book is a guide to instructional videos, and as such can be used for self study, or as a textbook for a Calculus course following the flipped classroom model.

**An essential** companion to this book is the exercise manual Exercises for A youtube Calculus Workbook Part II: a flipped classroom model, which also outlines and discusses the structure for a flipped classroom course based on this material.

For future reference, the play list of all the videos is available at:

www.youtube.com/playlist? list=PLm168eGEcBjnS6ecJflh7BTDaUB6jShIL.

If you need to review any part of Calculus I, please refer to the first youtube workbook, whose associated play-list is available at:

www.youtube.com/playlist? list=PL265CB737C01F8961.

In particular, undefined notions or Theorems we may refer to that are not stated in the present book can be found in the first volume.

I hope that only few errors are left in this book, but some are bound to remain. I welcome feedback and comments at calculusvideos@gmail.com.