Skip navigation

Bookboon.com Téléchargez des eBooks gratuits

Choose a category

Real Functions in One Variable

Real Functions in One Variable
4,3 (12 critiques)
ISBN : 978-87-7681-117-4
2 édition
Pages : 146
  • Prix : 129,00 kr
  • Prix : €13,99
  • Prix : £13,99
  • Prix : ₹250
  • Prix : $13,99
  • Prix : 129,00 kr
  • Prix : 129,00 kr

4 simples étapes avant de télécharger GRATUITEMENT

Veuillez nous excuser pour le désagrément, mais afin de visionner nos livres ou vidéos, vous nécessitez un navigateur web qui autorise JavaScript.
Êtes-vous intéressé(e) de recevoir des actualités sur des eBooks gratuits et des news sur Bookboon ?
Après avoir communiqué votre adresse E-Mail, vous recevrez une confirmation dans votre boîte de réception. Veuillez confirmer ce mail afin de recevoir nos actualités en matière de eBooks. Nous ne partagerons pas vos coordonnées.
eLib
Développez le potentiel de vos employés
Exemple

eLibrary d'entreprise

Découvrez nos solutions pour développer vos employés

Ceci est un eBook Premium

Bookboon Premium : accès à plus de 800 eBooks sans pub

Vous pouvez vous abonner et accéder à plus de 800 eBooks grâce à Premium, ou acheter ce livre individuellement.

  • Testez gratuitement pendant 30 jours. Après la période d'essai : 39,99 kr par mois
  • Testez gratuitement pendant 30 jours. Après la période d'essai : €5,99 par mois
  • Testez gratuitement pendant 30 jours. Après la période d'essai : £4,99 par mois
  • Testez gratuitement pendant 30 jours. Après la période d'essai : ₹299 par mois
  • Testez gratuitement pendant 30 jours. Après la période d'essai : $3,99 par mois
  • Testez gratuitement pendant 30 jours. Après la période d'essai : 39,99 kr par mois
  • Testez gratuitement pendant 30 jours. Après la période d'essai : 39,99 kr par mois
eLib
Développez le potentiel de vos employés
Cliquez ici !

eLibrary d'entreprise

Découvrez nos solutions pour développer vos employés

A propos du livre

  1. Description
  2. Préface
  3. Table des matières

Description

This series consists of six book on the elementary part of the theory of real functions in one variable. It is basic in the sense that Mathematics is the language of Physics. The emhasis is laid on worked exammples, while the mathematical theory is only briefly sketched, almost without proofs. The reader is referred to the usual textbooks. The most commonly used formulæ are included in each book as a separate appendix.

Préface

The publisher recently asked me to write an overview of the most common subjects in a first course of Calculus at university level. I have been very pleased by this request, although the task has been far from easy.

Since most students already have their recommended textbook, I decided instead to write this contribution in a totally different style, not bothering too much with rigoristic assumptions and proofs. The purpose was to explain the main ideas and to give some warnings at places where students traditionally make errors.

By rereading traditional textbooks from the first course of Calculus I realized that since I was not bound to a strict logical structure of the contents, always thinking of the students’ ability at that particular stage of the text, I could give some additional results which may be useful for the reader. These extra results cannot be given in normal textbooks without violating their general idea. This has actually been great fun to me, and I hope that the reader will find these additions useful. At the same time most of the usual stuff in these initial courses in Calculus has been treated.

When emphasizing formulæ I had the choice of putting them into a box, or just give them a number. I have chose the latter, because too many boxes would overwhelm the reader. On the other hand, I had sometimes also to number less important formulæ because there are local references to them. I hope that the reader can distinguish between these two applications of the numbering.

In the Appendix I have collected some useful formulæ, which the reader may use for references.

It should be emphasized that this is not an ordinary textbook, but instead a supplement to existing ones, hopefully giving some new ideas in how problems in Calculus can be solved.

It is impossible to avoid errors in any book, so even if I have done my best to correct them, I would not dare to claim that I have got rid of all of them. If the reader unfortunately should use a formula or result which has been wrongly put here (misprint or something missing) I do hope that my sins will be forgiven.

Leif Mejlbro

Table des matières

  1. Complex Numbers
    1. Introduction
    2. Definition
    3. Rectangular description in the Euclidean plane
    4. Description of complex numbers in polar coordinates
    5. Algebraic operations in rectangular coordinates
    6. The complex exponential function
    7. Algebraic operations in polar coordinates
    8. Roots in polynomials
  2. The Elementary Functions
    1. Introduction
    2. Inverse functions
    3. Logarithms and exponentials
    4. Power functions
    5. Trigonometric functions
    6. Hyperbolic functions
    7. Area functions
    8. Arcus functions
    9. Magnitude of functions
  3. Differentiation
    1. Introduction
    2. Definition and geometrical interpretation
    3. A catalogue of known derivatives
    4. The simple rules of calculation
    5. Differentiation of composite functions
    6. Differentiation of an implicit given function
    7. Differentiation of an inverse function
  4. Integration
    1. Introduction
    2. A catalogue of standard antiderivatives
    3. Simple rules of integration
    4. Integration by substitution
    5. Complex decomposition of fractions of polynomials
    6. Integration of a fraction of two polynomials
    7. Integration of trigonometric polynomials
  5. Simple Differential Equations
    1. Introduction
    2. Differential equations which can be solved by separation
    3. The linear differential equation of first order
    4. Linear differential equations of constant coefficients
    5. Euler’s differential equation
    6. Linear differential equations of second order with variable coefficients
  6. Approximations of Functions
    1. Introduction
    2. e - functions
    3. Taylor’s formula
    4. Taylor expansions of standard functions
    5. Limits
    6. Asymptotes
    7. Approximations of integrals
    8. Miscellaneous applications
  7. Formulæ
    1. Squares etc.
    2. Powers etc.
    3. Differentiation
    4. Special derivatives
    5. Integration
    6. Special antiderivatives
    7. Trigonometric formulæ
    8. Hyperbolic formulæ
    9. Complex transformation formulæ
    10. Taylor expansions
    11. Magnitudes of functions
This website uses cookies to improve user experience. By using our website you consent to all cookies in accordance with EU regulation.