Skip navigation

Bookboon.com Descarga eBooks y libros de texto gratis

Choose a category

Matrix Methods and Differential Equations

A Practical Introduction

Matrix Methods and Differential Equations
4,6 (41 Opiniones)
ISBN: 978-87-403-0251-6
1 edición
Páginas : 168
  • Price: 129,00 kr
  • Price: €13,99
  • Price: £13,99
  • Price: ₹250
  • Price: $13,99
  • Price: 129,00 kr
  • Price: 129,00 kr

Descarga GRATIS tus ebooks en 4 sencillos pasos

Lo sentimos, pero para poder descargar nuestros libros o ver nuestros vídeos, necesitas un navegador que permita JavaScript.
¿Podemos sugerirle eBooks gratuitos y noticias relevantes sobre Bookboon?
Después de introducir tu dirección de correo electrónico, recibirás un correo de confirmación. Confirma este correo para recibir el boletín de noticias mensual con respecto a libros de texto gratuitos. Los datos de contacto que nos proporciones no serán proporcionados a terceros.
eLib
Unlock your organization's learning potential
See Demo

Corporate eLibrary

Discover our employee learning solutions

This is a Premium eBook

Bookboon Premium - Gain access to over 800 eBooks - without ads

You can get free access for a month to this - and 800 other books with the Premium Subscription. You can also buy the book below

  • Start a 30-day free trial. After trial: 39,99 kr p/m
  • Start a 30-day free trial. After trial: €5,99 p/m
  • Start a 30-day free trial. After trial: £4,99 p/m
  • Start a 30-day free trial. After trial: ₹299 p/m
  • Start a 30-day free trial. After trial: $3,99 p/m
  • Start a 30-day free trial. After trial: 39,99 kr p/m
  • Start a 30-day free trial. After trial: 39,99 kr p/m
eLib
Unlock your organization's learning potential
Click here!

Corporate eLibrary

Discover our employee learning solutions

Acerca del libro

  1. Descripción
  2. Contenido

Descripción

This book is aimed at students who encounter mathematical models in other disciplines. It assumes some knowledge of calculus, and explains the tools and concepts for analysing models involving sets of either algebraic or 1st order differential equations. The text emphasises commonalities between these modelling approaches.

The approach is practical, aiming at insight to understand the mathematical principles, but recognising that real world modelling uses computer algebra software. Hands on exploration is supported by giving software commands interspersed in the text, as well as their output.

Contenido

  1. Introduction Mathematical Modelling
  2. What is a mathematical model?
    1. Using mathematical models
    2. Types of models
    3. How is this book useful for modelling?
  3. Simultaneous Linear Equations
    1. Introduction
    2. Matrices
    3. Applying matrices to simultaneous equations
    4. Determinants
    5. Inverting a Matrix by Elementary Row Operations
    6. Solving Equations by Elementary Row Operations
    7. Homogeneous and Non-homogeneous equations
  4. Matrices in Geometry
    1. Reflection
    2. Shear
    3. Plane Rotation
    4. Orthogonal and orthonormal vectors
    5. Geometric addition of vectors
    6. Matrices and vectors as objects
  5. Eigenvalues and Diagonalization
    1. Linear superpositions of vectors
    2. Calculating Eigenvalues and Eigenvectors
    3. Similar matrices and diagonalisation
    4. How eigenvalues relate to determinants
    5. Using diagonalisation to decouple linear equations
    6. Orthonormal eigenvectors
    7. Summary: eigenvalues, eigenvectors and diagonalisation.
  6. Revision: Calculus Results
    1. Differentiation formulas
    2. Rules of Differentiation
    3. Integration Formulas
    4. Integration Methods
  7. First Order Differential Equations
    1. Introduction
    2. Initial value problems
    3. Classifying First Order Differential Equations
    4. Separation of variables
    5. General Method for solving LFODE’s.
    6. Applications to modelling real world problems
    7. Characterising Solutions Using a Phase Line
    8. Variation of Parameters method
    9. The Main Points Again – A stepwise strategy for solving FODE’s.
  8. General Properties of Solutions to Differential Equations
    1. Introduction
    2. Homogenous Linear Equations
  9. Systems of Linear Differential Equations
    1. Introduction
    2. Homogenous Systems
    3. The Fundamental Matrix
    4. Repeated Eigenvalues
    5. Non-homogenous systems
  10. Appendix: Complex Numbers
    1. Representing complex numbers
    2. Algebraic operations
    3. Euler’s formula
    4. Log, Exponential and Hyperbolic functions
    5. Differentiation Formulae
This website uses cookies to improve user experience. By using our website you consent to all cookies in accordance with EU regulation.