Since 2009 the author is retired from the University of Antwerp. Until the present day his teaching duties include a course on ``Partial Differential Equations and Operators’’ and one on ``Advanced Stochastic Processes’’. In the sixties the author was a student at the Catholic University of Nijmegen,...
In this book, which is basically self-contained, the following topics are treated thoroughly: Brownian motion as a Gaussian process, Brownian motion as a Markov process, and Brownian motion as a martingale. Brownian motion can also be considered as a functional limit of symmetric random walks, which is, to some extent, also discussed. Related topics which are treated include Markov chains, renewal theory, the martingale problem, Itô calculus, cylindrical measures, and ergodic theory. Convergence of measures, stochastic differential equations, Feynman-Kac semigroups, and the Doob-Meyer decomposition theorem theorem are discussed in the second part of the book.