Kombinatorische und diskrete Mathematik

Bewertung :
( 13 )
131 pages
Sprache:
 German
Nirgendwo wie in der Kombinatorik hängen die Begriffe "Zählen" und "Zahlen" so eng zusammen.
Das ist ein kostenloses eBook für Studenten
Registrieren Sie sich für einen kostenlosen Zugang
Jederzeit kostenlose Textbücher. Weniger als 15% Werbeanzeigen
 
30-Tage Gratisprobe
Business Abonnement kostenlos für die ersten 30 Tage , dann $5.99/mo
Die neuesten Bücher
Über den Autor

Prof. Dr. Ulrich Faigle

Forschungsgebiete: Mathematische Optimierung, Kombinatorik, Mathematische Spieltheorie und Operations Research

1973 Diplom in Mathematik an der Universität Tübingen

1977 Promotion in Mathematik an der University of North Carolina at Chapel Hill, US...

Description
Content
Reviews

Nirgendwo wie in der Kombinatorik hängen die Begriffe "Zählen" und "Zahlen" so eng zusammen. In der kombinatorischen Zähltheorie geht man von den natürlichen Zahlen aus, um elementare Zählprobleme zu lösen. Die erweitert man zu allgemeineren Zahlen, um allgemeinere Zählprobleme anzugehen usw. Das Buch führt in diese algebraischen Strukturenwelt und Analysetechnik ein und demonstriert Anwendungen an typischen kombinatorischen Problemen. Zudem wird gezeigt, wie der Wunsch, kombinatorische Objekte mit bestimmten Eigenschaften konkret zu konstruieren, zu typischen Problemen der diskreten Optimierung führt. Dabei wird insbesondere das Modell von Flüssen in Netzwerken diskutiert und der Leser bis an grundlegende Fragen der gegenwärtigen Forschung geführt. Das Buch richtet sich an Interessierte mit mathematischen Grundkenntnissen der Analysis und linearen Algebra und ist zum Selbststudium geeignet. Weiterführende Techniken werden im Text ad hoc entwickelt. Die Darstellung verzichtet auf unnötige Abstraktion. Grundgedanken werden immer anwendungsbezogen in elementaren Kontexten verständlich gemacht.

  1. Vorwort
  2. Elementares Zählen
    1. Die naturlichen Zahlen
    2. Die fundamentalen Zählprinzipien
  3. Polynomalgebra
    1. Der Binomialsatz
    2. Division mit Rest
  4. Ringe
    1. Halbgruppen und Ringe
    2. Restklassen und endliche Körper
  5. Potenzreihen
    1. Formale Potenzreihen
    2. Erzeugende Funktionen
    3. Rekursionen
    4. Asymptotische Eigenschaften
  6. Inzidenzalgebra
    1. Möbiusfunktion und -Funktion
    2. Möbiusinversion und Siebformel
    3. Eulercharakteristik und Kettenkomplexe
    4. Planare Graphen
  7. Netzwerke
    1. Der Algorithmus von Ford und Fulkerson
    2. Anwendungen
  8. Der Greedy-Algorithmus
  9. Literaturverzeichnis
Da drinn stehten eine veilzahl an Kompilation von Zahlen die sehr nützlich sind.
26. Februar 2014 um 04:54
More reviews