Hydrodynamic Modelling and Granular Dynamics

Anmeldelse :
( 12 )
44 pages
Sprog:
 English
In the field of particle technology hydrodynamic modelling in the form of CFD or DEM is an area with increasing focus in terms of modelling approach to granulation processes.
Dette er en gratis e-bog til studerende
Tilmeld dig for gratis adgang
Alle studiebøger gratis for evigt. Mindre end 15 % annoncer
 
Gratis 30 dages prøveperiode
Premium abonnement gratis i de første 30 dage, derefter $5.99/mnd
Seneste tilføjelse
Om forfatteren

Peter Dybdahl Hede has a M.Sc. and PhD degree in Chemical Engineering from the Technical University of Denmark and a Business Diploma (HD) in Finance from the Copenhagen Business School. Working as Customer Solutions Application Manager in a large biotech company Peters´ areas of expertise spans from...

Description
Content

In the field of particle technology hydrodynamic modelling in the form of CFD or DEM is an area with increasing focus in terms of modelling approach to granulation processes. Although being used at many universities and in industry it is a difficult topic with only few textbooks available. This text provides a beginners guide to hydrodynamic modelling with focus on agglomeration processes. The basic terms and principles are introduced including Eulerian and Langrangian models. Thus, you will be familiar with the basic principles and theory within this interesting field on a bachelor or master-of-science level.

The present text introduces hydrodynamic modelling principles in the context of batch wet granulation and coating systems and it reviews the latest achievements and proposals in the scientific literature in this field. The text concerns primarily the Eulerian and the Lagrangian modelling technique. In accordance with some of the latest published Ph.d. thesis in the field of hydrodynamics modelling, the Lagrangian technique is divided into a soft-particle and a hard-sphere approach. The text further presents some of the latest trends and results from the growing field of applying Computational Fluid Dynamics and Discrete Element Modelling in the field of modelling fluid bed granulation processes. Further, a number of other granule dynamic modelling principles including the Finite Element and Monte Carlo techniques are introduced.

The text is aimed at undergraduate university or engineering-school students working in the field of mathematical or chemical and biochemical engineering. Newly graduated as well as experienced engineers may also find relevant new information as emphasis is put on the newest scientific discoveries and proposals presented in recent years of scientific publications. It is the hope that the present introductory text will be helpful to the reader – particularly in the early stages of the process of working with hydrodynamics in a granulation context. The comprehensive literature list may also hopefully be an inspiration for further reading.

I alone am responsible for any misprints or errors and I will be grateful to receive any critics and/or suggestions for further improvements.

Copenhagen, September 2006

Peter Dybdahl Hede

  1. Hydrodynamic modelling and granular dynamics in respect to fluid bed processing
    1. Eulerian models
    2. Lagrangian models – Discrete Element Methods
    3. Other granular dynamic modelling principles
  2. Summary
  3. Table of symbols
  4. Literature