Kategorier Priser Virksomhedsløsninger
Free Textbook

Exercises in Drilling Fluid Engineering

14 Anmeldelser
(14 ratings)
110
Language:  English
This is the exercise book accompanying Drilling Fluid Engineering.
Download free PDF textbooks or read online. Less than 15% adverts
Premium abonnement gratis i de første 30 dage, derefter $5.99/mnd
Beskrivelse
Forord
Indhold

This is the exercise book accompanying Drilling Fluid Engineering.

This book presents how to apply fluid mechanics on drilling fluid related challenges and explains the related physics involved and the different engineering approaches. Mud has many functions, the single most important one is to remove the cuttings a) away from under the bit and b) transport them from the bottom to the surface. Viscosity of drilling fluids is not a constant parameter; it varies with shear rate. Pipe, rock bit and annular friction pressure loss has high importance for several tasks. Stable wellbore includes many sub tasks like chemical stability and filtration control.

These exercises have been developed to fit the content of the text book Drilling Fluid Engineering. The understanding of the physics and mathematics of the processes has been in focus of both the textbook and the exercises book. Many practical applications have also been created and entered into the collection of exercises. Most of the exercises have been solved and corrected by students in the corresponding course at the Department of Petroleum Engineering and Applied Geophysics at NTNU in Trondheim. 

  1. Fluid Properties
    1. Rheology control
    2. Rheology control
    3. Flocculation
    4. Mud contamination
    5. Flocculation
    6. Fluid additives
    7. Fluid additives
    8. Rheological models
      1. Bingham/Power law.
      2. Bingham/Power-law
      3. Bingham/Power-law. Regression
      4. Effective viscosity
      5. All models
      6. All models. Regression
      7. All models
  2. Drilling fluid dynamics
    1. Velocity profile. Continuity equation
    2. Velocity profile. Momentum flux
    3. Velocity profile
    4. Pressure loss vs. rheology
    5. Pressure loss vs. rheology
    6. Pressure loss vs. rheology
    7. Pressure loss. Power-law
    8. Pressure loss. Turbulent. Energy equation
    9. Pressure loss vs. flow rate
    10. Pressure loss. Use field data to evaluate model
    11. Pressure loss. Effect of rotation
    12. Pressure loss. Nozzles. OFU
    13. Swab pressure. Cling factor
    14. Swab pressure model
  3. Hydraulic program
    1. Mud pump issues
    2. Optimal nozzles? Section wise
    3. Liner selection. Section wise
    4. Hydraulic program. Section wise (i.e. all liners are treated as if in range I)
    5. Optimal parameters for BHHP. OFU. Section wise
    6. Liner selection. Complete well
    7. Liner selection. Complete well
  4. Well challenges
    1. Filtration control
    2. Filtration control
    3. Cuttings concentration
    4. Cuttings concentration
    5. Density control
    6. Density control
    7. ECD. Barite
    8. ECD. Fluid and flow
    9. Water activity
    10. Shale stability
    11. Shale stability
    12. Wellbore problem
  5. Supportive Information
    1. Pump (National 12-P-160) and hydraulic program data
    2. Pressure loss equations
    3. Conversion factors and formulas
  6. Solutions to exercises in drilling fluid engineering
    1. Rheology control
    2. Rheology control
    3. Flocculation
    4. Mud contamination
    5. Flocculation
    6. Fluid additives
    7. Fluid additives
  7. Rheological models
    1. Bingham / Power-law
    2. Bingham/Power-law
    3. Bingham/Power-law. Regression
    4. Effective viscosity
    5. All models
    6. All models. Regression
    7. All models.
  8. Drilling fluid dynamics
    1. Velocity profile. Continuity equation
    2. Velocity profile. Momentum flux
    3. Flow profile
    4. Pressure loss vs. rheology
    5. Pressure loss vs. Rheology
    6. Pressure loss. Power law
    7. Pressure loss. Turbulent flow. Energy equation
    8. Pressure loss vs. flow rate
    9. Pressure loss. Field data
    10. Pressure loss. Effects of rotation
    11. Pressure loss. Bit nozzle. OFU
    12. Swab pressure. Clinging factor
  9. Hydraulic program
    1. Mud pump issues
    2. Nozzle selection. Section wise
    3. Liner selection. Section wise
    4. Hydraulic program. Section wise
    5. Optimal parameters with BHHP. OFU. Section wise
    6. Liner selection. Complete well
    7. Liner selection. Complete well
  10. Wellbore challenges
    1. Filtration control
    2. Filtration control
    3. Cuttings concentration
    4. Cuttings
    5. Density control
    6. Density control
    7. ECD. Barite
    8. ECD. Flow rate & fluid consistency
    9. Water activity
    10. Shale stability
    11. Shale stability
    12. Wellbore problems
About the Author

Pål Skalle

Pål has worked as a professor with students for more than 40 years. His favorite activity has been to be their guide, supervisor and co-author.  

He is especially eager to develop new, useful knowledge, and to make it known for a broader audience. For this purpose, he has written and co-authored more than 100 technical papers, and has acted as editor of the SPE Journal of Drilling & Completion. In 2008 he achieved the prestigious SPE award “A Peer Apart” for evaluating more than 100 SPE peer review journal papers.  

One issue Pål is proud of is the authoring of a guide of how to build up a master thesis in a logical and focused manner. This guide he wrote for master students in Petroleum engineering at University of Eduardo Mondlane in Maputo, Mozambique. 

It should also be mentioned that Pål is eager to bring good and even crazy ideas out into the real world. For this purpose, he was the co-founder of four different privately-owned production companies. 

His topics of interest includes: 

·         Drilling and cement slurry technology

·         Wellbore safety and stability

·         Down hole operational errors and failures