Kombinatorische und diskrete Mathematik

notes:
( 13 )
131 pages
Jazyk:
 German
Nirgendwo wie in der Kombinatorik hängen die Begriffe "Zählen" und "Zahlen" so eng zusammen.
Toto je bezplatná eKniha pro studenty
Pro přístup zdarma se zaregistrujte
Všechny studentské knihy zdarma, navždy. Méně než 15% reklam
 
Prvních 30 dní zdarma
Byznys předplatné zdarma během prvních 30 dnů, pak $5.99/m
O autorovi

Prof. Dr. Ulrich Faigle

Forschungsgebiete: Mathematische Optimierung, Kombinatorik, Mathematische Spieltheorie und Operations Research

1973 Diplom in Mathematik an der Universität Tübingen

1977 Promotion in Mathematik an der University of North Carolina at Chapel Hill, US...

Description
Content
Reviews

Nirgendwo wie in der Kombinatorik hängen die Begriffe "Zählen" und "Zahlen" so eng zusammen. In der kombinatorischen Zähltheorie geht man von den natürlichen Zahlen aus, um elementare Zählprobleme zu lösen. Die erweitert man zu allgemeineren Zahlen, um allgemeinere Zählprobleme anzugehen usw. Das Buch führt in diese algebraischen Strukturenwelt und Analysetechnik ein und demonstriert Anwendungen an typischen kombinatorischen Problemen. Zudem wird gezeigt, wie der Wunsch, kombinatorische Objekte mit bestimmten Eigenschaften konkret zu konstruieren, zu typischen Problemen der diskreten Optimierung führt. Dabei wird insbesondere das Modell von Flüssen in Netzwerken diskutiert und der Leser bis an grundlegende Fragen der gegenwärtigen Forschung geführt. Das Buch richtet sich an Interessierte mit mathematischen Grundkenntnissen der Analysis und linearen Algebra und ist zum Selbststudium geeignet. Weiterführende Techniken werden im Text ad hoc entwickelt. Die Darstellung verzichtet auf unnötige Abstraktion. Grundgedanken werden immer anwendungsbezogen in elementaren Kontexten verständlich gemacht.

  1. Vorwort
  2. Elementares Zählen
    1. Die naturlichen Zahlen
    2. Die fundamentalen Zählprinzipien
  3. Polynomalgebra
    1. Der Binomialsatz
    2. Division mit Rest
  4. Ringe
    1. Halbgruppen und Ringe
    2. Restklassen und endliche Körper
  5. Potenzreihen
    1. Formale Potenzreihen
    2. Erzeugende Funktionen
    3. Rekursionen
    4. Asymptotische Eigenschaften
  6. Inzidenzalgebra
    1. Möbiusfunktion und -Funktion
    2. Möbiusinversion und Siebformel
    3. Eulercharakteristik und Kettenkomplexe
    4. Planare Graphen
  7. Netzwerke
    1. Der Algorithmus von Ford und Fulkerson
    2. Anwendungen
  8. Der Greedy-Algorithmus
  9. Literaturverzeichnis
Da drinn stehten eine veilzahl an Kompilation von Zahlen die sehr nützlich sind.
26. února 2014 4:54
More reviews