Skip navigation

Bookboon.com Download free eBooks and textbooks

Choose a category

Study notes for Statistical Physics

A concise, unified overview of the subject

Study notes for Statistical Physics
Not enough reviews yet
ISBN: 978-87-403-0841-9
1 edition
Pages : 116
  • Price: 129.00 kr
  • Price: €13.99
  • Price: £13.99
  • Price: ₹250
  • Price: $13.99
  • Price: 129.00 kr
  • Price: 129.00 kr

Download for FREE in 4 easy steps...

We are terribly sorry, but in order to download our books or watch our videos, you will need a browser that allows JavaScript.
After entering your email address, a confirmation email will be sent to your inbox. Please approve this email to receive our weekly eBook update. We will not share your personal information with any third party.
eLib
Unlock your organization's learning potential
See Demo

Corporate eLibrary

Discover our employee learning solutions

This is a Premium eBook

Bookboon Premium - Gain access to over 800 eBooks - without ads

You can get free access for a month to this - and 800 other books with the Premium Subscription. You can also buy the book below

  • Start a 30-day free trial. After trial: 39.99 kr p/m
  • Start a 30-day free trial. After trial: €5.99 p/m
  • Start a 30-day free trial. After trial: £4.99 p/m
  • Start a 30-day free trial. After trial: ₹299 p/m
  • Start a 30-day free trial. After trial: $3.99 p/m
  • Start a 30-day free trial. After trial: 39.99 kr p/m
  • Start a 30-day free trial. After trial: 39.99 kr p/m
eLib
Unlock your organization's learning potential
Click here!

Corporate eLibrary

Discover our employee learning solutions

About the book

  1. Description
  2. Content

Description

This is an academic textbook for a one-semester course in statistical physics at honours BSc level. It is in three parts and begins with a unified treatment of equilibrium systems, based on the concept of the statistical ensemble, in which the usual combinatorial calculation only has to be worked out once. In the second part, it deals with strongly interacting systems in terms of many-body theory, including the virial expansion and critical phenomena at the level of mean-field theory. The third, and last, part of the book is concerned with time-dependence; and, it begins with a classical treatment of the paradox posed by the `arrow of time'. This is the question of why macroscopic systems are irreversible when their constituent microscopic interactions are reversible in time. It then treats the derivation of transport equations, linear response theory, and quantum dynamics. Throughout the book, the emphasis is on a clear, concise exposition, with all steps being clearly explained.

Content

  1. Introduction
    1. The isolated assembly
    2. Method of the most probable distribution
    3. Ensemble of assemblies: relationship between Gibbs and Boltzmann entropies
  2. Stationary ensembles
    1. Types of ensemble
    2. Variational method for the most probable distribution
    3. Canonical ensemble
    4. Compression of a perfect gas
    5. The Grand Canonical Ensemble (GCE)
  3. Examples of stationary ensembles
    1. Assembly of distinguishable particles
    2. Assembly of nonconserved, indistinguishable particles
    3. Conserved particles: general treatment for Bose-Einstein and Fermi-Dirac statistics
    4. The Classical Limit: Boltzmann Statistics
  4. The bedrock problem: strong interactions
    1. The interaction Hamiltonian
    2. Diagonal forms of the Hamiltonian
    3. Theory of specific heats of solids
    4. Quasi-particles and renormalization
    5. Perturbation theory for low densities
    6. The Debye-Hückel theory of the electron gas
  5. Phase transitions
    1. Critical exponents
    2. The ferro-paramagnetic transition
    3. The Weiss theory of ferromagnetism
    4. Macroscopic mean field theory: the Landau model for phase transitions
    5. Theoretical models
    6. The Ising model
    7. Mean-field theory with a variational principle
    8. Mean-field critical exponents for the Ising model
  6. Classical treatment of the Hamiltonian N-body assembly
    1. Hamilton’s equations and phase space
    2. Hamilton’s equations and 6N-dimensional phase space
    3. Liouville’s theorem for N particles in a box
    4. Probability density as a fluid
    5. Liouville’s equation: operator formalism
    6. The generalised H-theorem (due to Gibbs)
    7. Reduced probability distributions
    8. Basic cells in Γ space
  7. Derivation of transport equations
    1. BBGKY hierarchy (Born, Bogoliubov, Green, Kirkwood, Yvon)
    2. Equations for the reduced distribution functions
    3. The kinetic equation
    4. The Boltzmann equation
    5. The Boltzmann H-theorem
    6. Macroscopic balance equations
  8. Dynamics of Fluctuations
    1. Brownian motion and the Langevin equation
    2. Fluctuation-dissipation relations
    3. The response (or Green) function
    4. General derivation of the fluctuation-dissipation theorem
  9. Quantum dynamics
    1. Fermi’s master equation
    2. Applications of the master equation
  10. Consequences of time-reversal symmetry
    1. Detailed balance
    2. Dynamics of fluctuations
    3. Onsager’s theorem
This website uses cookies to improve user experience. By using our website you consent to all cookies in accordance with EU regulation.