Introduction to Complex Numbers
YouTube Workbook

- Pris 129,00 kr
- Pris €13,99
- Pris £13,99
- Pris ₹250
- Pris $13,99
- Pris 129,00 kr
- Pris 129,00 kr
Ladda ner e-boken GRATIS i 4 enkla steg...

Ditt företags eBibliotek
Maximera ditt företags kompetens med hjälp av våra verktyg
Detta är en Premium eBok
Bookboon Premium - Få tillgång till över 800 reklamfria eBöcker
Du kan anmäla dig till Bookboon Premium och få GRATIS tillgång till denna samt 800 andra böcker i 30 dagar. Du kan köpa boken nedan.
- Starta dina GRATIS 30 dagar. Därefter 39,99 kr/månad
- Starta dina GRATIS 30 dagar. Därefter €5,99/månad
- Starta dina GRATIS 30 dagar. Därefter £4,99/månad
- Starta dina GRATIS 30 dagar. Därefter ₹299/månad
- Starta dina GRATIS 30 dagar. Därefter $3,99/månad
- Starta dina GRATIS 30 dagar. Därefter 39,99 kr/månad
- Starta dina GRATIS 30 dagar. Därefter 39,99 kr/månad


Ditt företags eBibliotek
Maximera ditt företags kompetens med hjälp av våra verktyg
De som tittade på detta tittade även på
-
Integration and differential equations
-
Elementary Algebra Exercise Book I
-
Introduction to Vectors YouTube classes with Dr Chris Tisdell
-
Matrix Methods and Differential Equations A Practical Introduction
-
Engineering Mathematics: YouTube Workbook
-
Mathematics Fundamentals
-
Essential Engineering Mathematics
-
Mathematics for Computer Scientists
Om boken
Läsarrecensioner
Luis Armando ★★★★★
Muy bueno
Förklaring
This ebook makes learning "complex" numbers easy through an interactive, fun and personalized approach. Features include: live YouTube video streams and closed captions that translate to 90 languages!
Complex numbers "break all the rules" of traditional mathematics by allowing us to take a square root of a negative number. This "radical" approach has fundamentally changed the capabilities of science and engineering to enhance our world through such applications as: signal processing, control theory, electromagnetism, fluid dynamics, quantum mechanics, cartography, and vibration analysis. A particularly beautiful connection between art and complex numbers lies in fractals, such as the Mandelbrot set.
Download this ebook and subscribe to the author's YouTube channel for more! http://www.YouTube.com/DrChrisTisdell
Innehåll
- What is a complex number?
- Video 1: Complex numbers are AWESOME
- Basic operations involving complex numbers
- Video 2: How to add/subtract two complex numbers
- Video 3: How to multiply a real number with a complex number
- Video 4: How to multiply complex numbers together
- Video 5: How to divide complex numbers
- Video 6: Complex numbers: Quadratic formula
- What is the complex conjugate?
- Video 7: What is the complex conjugate?
- Video 8: Calculations with the complex conjugate
- Video 9: How to show a number is purely imaginary
- Video 10: How to prove the real part of a complex number is zero
- Video 11: Complex conjuage and linear systems
- Video 12: When are the squares of z and its conjugate equal?
- Video 13: Conjugate of products is product of conjugates
- Video 14: Why complex solutions appear in conjugate pairs
- How big are complex numbers?
- Video 15: How big are complex numbers?
- Video 16: Modulus of a product is the product of moduli
- Video 17: Square roots of complex numbers
- Video 18: Quadratic equations with complex coefcients
- Video 19: Show real part of complex number is zero
- Polar trig form
- Video 20: Polar trig form of complex number
- Polar exponential form
- Video 21: Polar exponential form of a complex number
- Revision Video 22: Intro to complex numbers + basic operations
- Revision Video 23: Complex numbers and calculations
- Video 24: Powers of complex numbers via polar forms
- Powers of complex numbers
- Video 25: Powers of complex numbers
- Video 26: What is the power of a complex number?
- Video 27: Roots of comples numbers
- Video 28: Complex numbers solutions to polynomial equations
- Video 29: Complex numbers and tan (π/12)
- Video 30: Euler’s formula: A cool proof
- De Moivre’s formula
- Video 31: De Moivre’s formula: A cool proof
- Video 32: Trig identities from De Moivre’s theorem
- Video 33: Trig identities: De Moivre’s formula
- Connecting sin, cos with e
- Video 34: Trig identities and Euler’s formula
- Video 35: Trig identities from Euler’s formula
- Video 36: How to prove trig identities WITHOUT trig!
- Revision Video 37: Complex numbers + trig identities
- Regions in the complex plane
- Video 38: How to determine regions in the complex plane
- Video 39: Circular sector in the complex plane
- Video 40: Circle in the complex plane
- Video 41: How to sketch regions in the complex plane
- Complex polynomials
- Video 42: How to factor complex polynomials
- Video 43: Factorizing complex polynomials
- Video 44: Factor polynomials into linear parts
- Video 45: Complex linear factors