Skip navigation

Bookboon.com Last ned gratis eBøker og lærebøker

Choose a category

Differential Equations with YouTube Examples

Differential Equations with YouTube Examples
4,6 (30 vurderinger) Les omtaler
ISBN: 978-87-403-0656-9
1 utgave
Sider : 57
  • Pris: 129,00 kr
  • Pris: €13,99
  • Pris: £13,99
  • Pris: ₹250
  • Pris: $13,99
  • Pris: 129,00 kr
  • Pris: 129,00 kr

Last ned GRATIS med 4 enkle steg…

Vi beklager, men for å laste ned våre bøker eller se våre videoer må du ha en nettleser som støtter JavaScript.
Kan vi friste med noen KOSTNADSFRIE e-bøker og relevante Bookboon-oppdateringer?
Etter å ha oppgitt e-postadressen blir en bekreftelsesmail sendt til din mailbox. Vennligst godkjenn den for å motta vår ukentlig eBok-oppdatering. Eventuell kontaktinformasjon som blir oppgitt, vil ikke bli oppgitt til noen tredjepart.
eLib
Lås opp ditt selskaps læringspotensial
Se demo

Korporat eBibliotek

Utforsk våre Firmaløsninger for ansattes læring

Dette er en Premium-eBok

Bookboon Premium - Få tilgang til over 800 eBøker - uten annonser

Du kan få gratis tilgang til dette i én måned - og 800 andre bøker med Premium-abonnementet. Du kan også kjøpe boken nedenfor

  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: 39,99 kr p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: €5,99 p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: £4,99 p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: ₹299 p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: $3,99 p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: 39,99 kr p/m
  • Start en 30 dagers gratis prøveperiode. Etter prøveperioden: 39,99 kr p/m
eLib
Lås opp ditt selskaps læringspotensial
Klikk her!

Korporat eBibliotek

Utforsk våre Firmaløsninger for ansattes læring

Om boken

  1. Vurderinger
  2. Beskrivelse
  3. Innledning
  4. Innhold

Vurderinger

★★★★★

Very interesting book.

Beskrivelse

This book, together with the linked YouTube videos, reviews a first course on differential equations. The main purpose is to help students prepare for their university exams. Theory is summarized, and the solutions of typical exam questions are demonstrated in YouTube videos. Additional practice questions are given and their solutions are presented in the Appendix. The topics covered, which can be studied independently, include various first-order differential equations, second-order differential equations with constant coefficients, the Laplace transform, power series solutions, Cauchy-Euler equations, systems of linear first-order equations, nonlinear differential equations, and Fourier series.

Innledning

This review book, used in conjuction with free online YouTube videos, is designed to help students prepare for exams, or for self-study. The topics covered here are most of the standard topics covered in a first course in differential equations.

The chapters and sections of this review book, organized by topics, can be read independently. Each chapter or section consists of three parts: (1) Theory; (2) YouTube Example; and (3) Additional Practice. In Theory, a summary of the topic and associated solution method is given. It is assumed that the student has seen the material before in lecture or in a standard textbook so that the presentation is concise. In YouTube Example, an online YouTube video illustrates how to solve an example problem given in the review book. Students are encouraged to view the video before proceeding to Additional Practice, which provides additional practice exercises similar to the YouTube example. The solutions to all of the practice exercises are given in this review book’s Appendix.

For students who self-study, or desire additional explanatory materials, a complete set of free lecture notes by the author entitled An Introduction to Differential Equations can be downloaded by clicking HERE. This set of lecture notes also contains links to additional YouTube tutorials. The lecture notes and tutorials have been extensively used by the author over several years when teaching an introductory differential equations course at the Hong Kong University of Science and Technology.

Innhold

  1. First-order differential equations
    1. Separable equations
    2. Linear equations
    3. Exact equations
    4. Bernoulli equations
    5. First-order homogeneous equations
    6. Riccati equations
  2. Second-order differential equations with constant coefficients
    1. Homogeneous equations
    2. Inhomogeneous equations
  3. The Laplace transform
  4. Power series solutions
  5. Cauchy-Euler equations
  6. Systems of linear equations
  7. Nonlinear differential equations
    1. Fixed points and linear stability analysis
    2. Bifurcation theory
  8. Fourier series
  9. Appendix A: Table of Laplace transforms
  10. Appendix B: Answers to Additional Practice
This website uses cookies to improve user experience. By using our website you consent to all cookies in accordance with EU regulation.