Skip navigation

Bookboon.com Gratis studiebøger og e-bøger

Choose a category

Study notes for Statistical Physics

A concise, unified overview of the subject

Study notes for Statistical Physics
4,8 (12 Anmeldelser)
ISBN: 978-87-403-0841-9
1. udgave
Sider : 116
  • Pris: 129,00 kr
  • Pris: €13,99
  • Pris: £13,99
  • Pris: ₹250
  • Pris: $13,99
  • Pris: 129,00 kr
  • Pris: 129,00 kr

4 nemme skridt til din e-bog

Vi beklager, men for at kunne downloade vores bøger eller se vores videoer, kræves det at din browser tillader JavaScript.
Er du interesseret i GRATIS e-bøger og relevante opdateringer fra Bookboon?
Efter du har indtastet din email addresse, modtager du en bekræftelsesmail. Venligst acceptér denne for at modtage vores ugentlige eBooks update. Vi giver ikke din personlige information videre.
eLib
Opnå din organisations potentiale
Se Demo

Corporate eLibrary

Se vores erhvervsløsninger til intern uddannelse

Dette er en Premium eBog

Bookboon Premium - Få adgang til over 800 eBøger - uden annoncer

Du kan få gratis adgang i 30 dage til denne - og 800 andre bøger via Premium abonnementet. Du kan også købe bogen nedenfor

  • Start et 30 dages prøveabonnement. Efter 30 dage: 39,99 kr pr/måned
  • Start et 30 dages prøveabonnement. Efter 30 dage: €5,99 pr/måned
  • Start et 30 dages prøveabonnement. Efter 30 dage: £4,99 pr/måned
  • Start et 30 dages prøveabonnement. Efter 30 dage: ₹299 pr/måned
  • Start et 30 dages prøveabonnement. Efter 30 dage: $3,99 pr/måned
  • Start et 30 dages prøveabonnement. Efter 30 dage: 39,99 kr pr/måned
  • Start et 30 dages prøveabonnement. Efter 30 dage: 39,99 kr pr/måned
eLib
Opnå din organisations potentiale
Klik her

Corporate eLibrary

Se vores erhvervsløsninger til intern uddannelse

Om bogen

  1. Beskrivelse
  2. Indholdsfortegnelse

Beskrivelse

This is an academic textbook for a one-semester course in statistical physics at honours BSc level. It is in three parts and begins with a unified treatment of equilibrium systems, based on the concept of the statistical ensemble, in which the usual combinatorial calculation only has to be worked out once. In the second part, it deals with strongly interacting systems in terms of many-body theory, including the virial expansion and critical phenomena at the level of mean-field theory. The third, and last, part of the book is concerned with time-dependence; and, it begins with a classical treatment of the paradox posed by the `arrow of time'. This is the question of why macroscopic systems are irreversible when their constituent microscopic interactions are reversible in time. It then treats the derivation of transport equations, linear response theory, and quantum dynamics. Throughout the book, the emphasis is on a clear, concise exposition, with all steps being clearly explained.

Indholdsfortegnelse

  1. Introduction
    1. The isolated assembly
    2. Method of the most probable distribution
    3. Ensemble of assemblies: relationship between Gibbs and Boltzmann entropies
  2. Stationary ensembles
    1. Types of ensemble
    2. Variational method for the most probable distribution
    3. Canonical ensemble
    4. Compression of a perfect gas
    5. The Grand Canonical Ensemble (GCE)
  3. Examples of stationary ensembles
    1. Assembly of distinguishable particles
    2. Assembly of nonconserved, indistinguishable particles
    3. Conserved particles: general treatment for Bose-Einstein and Fermi-Dirac statistics
    4. The Classical Limit: Boltzmann Statistics
  4. The bedrock problem: strong interactions
    1. The interaction Hamiltonian
    2. Diagonal forms of the Hamiltonian
    3. Theory of specific heats of solids
    4. Quasi-particles and renormalization
    5. Perturbation theory for low densities
    6. The Debye-Hückel theory of the electron gas
  5. Phase transitions
    1. Critical exponents
    2. The ferro-paramagnetic transition
    3. The Weiss theory of ferromagnetism
    4. Macroscopic mean field theory: the Landau model for phase transitions
    5. Theoretical models
    6. The Ising model
    7. Mean-field theory with a variational principle
    8. Mean-field critical exponents for the Ising model
  6. Classical treatment of the Hamiltonian N-body assembly
    1. Hamilton’s equations and phase space
    2. Hamilton’s equations and 6N-dimensional phase space
    3. Liouville’s theorem for N particles in a box
    4. Probability density as a fluid
    5. Liouville’s equation: operator formalism
    6. The generalised H-theorem (due to Gibbs)
    7. Reduced probability distributions
    8. Basic cells in Γ space
  7. Derivation of transport equations
    1. BBGKY hierarchy (Born, Bogoliubov, Green, Kirkwood, Yvon)
    2. Equations for the reduced distribution functions
    3. The kinetic equation
    4. The Boltzmann equation
    5. The Boltzmann H-theorem
    6. Macroscopic balance equations
  8. Dynamics of Fluctuations
    1. Brownian motion and the Langevin equation
    2. Fluctuation-dissipation relations
    3. The response (or Green) function
    4. General derivation of the fluctuation-dissipation theorem
  9. Quantum dynamics
    1. Fermi’s master equation
    2. Applications of the master equation
  10. Consequences of time-reversal symmetry
    1. Detailed balance
    2. Dynamics of fluctuations
    3. Onsager’s theorem
This website uses cookies to improve user experience. By using our website you consent to all cookies in accordance with EU regulation.