Kategorien Preise Unternehmen
Kostenloses Lehrbuch

Modern Introductory Mechanics

32 Bewertungen
(32 Bewertungen)
283
Language:  English
This book is a one semester undergraduate textbook covering topics in classical mechanics at an intermediate level.
Kostenlose PDF-Lehrbücher herunterladen oder online lesen. Weniger als 15 % Werbeeinblendungen
Business Abonnement kostenlos für die ersten 30 Tage , dann $5.99/mo
Beschreibung
Inhalt

“Modern Introductory Mechanics, Part I” is a one semester undergraduate textbook covering topics in classical mechanics at an intermediate level. The coverage is rigorous but concise and accessible, with an emphasis on concepts and mathematical techniques which are basic to most fields of physics. Some advanced topics such as chaos theory, Green functions, variational methods and scaling techniques are included. The book concludes with a presentation of Lagrangian and Hamiltonian mechanics and associated conservation laws. Many homework problems directly associated with the text are included.

Cover artwork by Gerald Plant.
  1. Chapter 1: Mathematical Review
    1. Trigonometry
    2. Matrices
    3. Orthogonal Transformations
    4. Scalar and Vector Fields
    5. Vector Algebra and Scalar Differentiation
    6. Alternate Coordinate Systems
    7. Angular Velocity
    8. Differential Operators and Leibnitz Rule
    9. Complex Variables
    10. Problems
  2. Chapter 2: Newtonian Mechanics
    1. Review of Newton’s Laws
    2. Simple Examples using Newton’s Laws
    3. Single Particle Conservation Theorems
    4. Potential Energy and Particle Motion
    5. Equilibrium and Stability in One Dimension
    6. Equilibrium and Stability in D Dimensions
    7. Problems
  3. Chapter 3: Linear Oscillations
    1. General Restoring Forces in One and Two Dimensions
    2. Damped Oscillations
    3. Circuit/Oscillator Analogy
    4. Driven Harmonic Oscillations
    5. Fourier Series Methods
    6. Green Function Methods
    7. Problems
  4. Chapter 4: Nonlinear Oscillations
    1. The Anharmonic Oscillator
    2. The Plane Pendulum
    3. Phase Diagrams and Nonlinear Oscillations
    4. The Logistic Difference Equation
    5. Fractals
    6. Chaos in Physical Systems
    7. Dissipative Phase Space
    8. Lyapunov Exponents
    9. The Intermittent Transition to Chaos
    10. Problems
  5. Chapter 5: Gravitation
    1. Newton’s Law of Gravitation
    2. Gravitational Potential
    3. Modifications for Extended Objects
    4. Eötvös Experiment on Composition Dependence of...
    5. Gravitational Forces
    6. Problems
  6. Chapter 6: Calculus of Variations
    1. Euler-Lagrange Equation
    2. “Second form” of Euler’s Equation
    3. Brachistochrone Problem
    4. The Case of More than One Dependent Variable
    5. The Case of More than One Independent Variable
    6. Constraints
    7. Lagrange Multipliers
    8. Isoperimetric Problems
    9. Variation of the End Points of Integration
    10. Problems
  7. Chapter 7: Lagrangian and Hamiltonian Mechanics
    1. The Action and Hamilton's Principle
    2. Generalized Coordinates
    3. Examples of the Formalism
    4. Two Points about Lagrangian Methods
    5. Types of Constraints
    6. Endpoint Invariance: Multiparticle Conservation Laws
    7. Consequences of Scale Invariance
    8. When Does H=T+U?
    9. Investigation into the Meaning of...
    10. Hamilton’s Equations
    11. Holonomic Constraints in Hamiltonian Formalism
    12. Problems
home.book.about_author
Walter

Walter Wilcox

Walter Wilcox is Professor of physics and former graduate program director for the Baylor University Physics Department. He has served as a Member-at-Large of the Texas Section of the American Physical Society (2013-2016) and is presently serving as Secretary-Treasurer of the same APS Section. He earned a PhD in elementary particle physics from UCLA in 1981 under the guidance of Dr. Julian Schwinger. He has also taught and done research at Oklahoma State University (1981–1983), TRIUMF Laboratory (1983-1985), and the University of Kentucky (1985–1986). He has been awarded grants from the National Science Foundation (NSF) in theoretical physics and, in collaboration with Dr. Ronald Morgan, in applied mathematics. His research focuses on the development and use of numerical methods in the field of theoretical physics known as "lattice QCD". He is the author of recent physics textbooks on quantum mechanics, classical mechanics and classical electrodynamics. He maintains the trademarked “Open Text Project” website at Baylor University; this website is dedicated to the free dissemination of quality physics teaching materials and applications for disadvantaged students. He has served as a judge at the Central Texas and Engineering Fair for more than 20 years, and has also served as Society of Physics Students sponsor within the Baylor Physics Department.

Dr. Wilcox's publications on INSPIRE