Skip navigation

Bookboon.com Descarga eBooks y libros de texto gratis

Choose a category

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics
5,0 (11 Opiniones)
ISBN
1 edición
Páginas : 80
  • Price: 129,00 kr
  • Price: €13,99
  • Price: £13,99
  • Price: ₹250
  • Price: $13,99
  • Price: 129,00 kr
  • Price: 129,00 kr

Descarga GRATIS tus ebooks en 4 sencillos pasos

Lo sentimos, pero para poder descargar nuestros libros o ver nuestros vídeos, necesitas un navegador que permita JavaScript.
Después de introducir tu dirección de correo electrónico, recibirás un correo de confirmación. Confirma este correo para recibir el boletín de noticias mensual con respecto a libros de texto gratuitos. Los datos de contacto que nos proporciones no serán proporcionados a terceros.
eLib
Unlock your organization's learning potential
See Demo

Corporate eLibrary

Discover our employee learning solutions

This is a Premium eBook

Bookboon Premium - Gain access to over 800 eBooks - without ads

You can get free access for a month to this - and 800 other books with the Premium Subscription. You can also buy the book below

  • Start a 30-day free trial. After trial: 39,99 kr p/m
  • Start a 30-day free trial. After trial: €5,99 p/m
  • Start a 30-day free trial. After trial: £4,99 p/m
  • Start a 30-day free trial. After trial: ₹299 p/m
  • Start a 30-day free trial. After trial: $3,99 p/m
  • Start a 30-day free trial. After trial: 39,99 kr p/m
  • Start a 30-day free trial. After trial: 39,99 kr p/m
eLib
Unlock your organization's learning potential
Click here!

Corporate eLibrary

Discover our employee learning solutions

Acerca del libro

  1. Contenido
  2. Descripción

Contenido

  1. A brief historical note on the origin of quantum mechanics
    1. The insuffiency of classical physics 
  2. Fundamental principles and theorems in quantum mechanics 
    1. Describing particles as waves 
    2. The postulates of quantum mechanics 
    3. Eigenvalues and eigenfunctions 
    4. Expansion via eigenfunctions 
    5. Probability current and density
    6. Simultaneous eigenfunctions 
    7. Time-evolution of expectation values 
    8. The Ehrenfest theorem 
    9. Heisenberg’s uncertainty principle 
  3. Solving the Schrödinger equation: bound states and scattering 
    1. Stationary states 
    2. Time-energy uncertainty: what it really means 
    3. Collapse of the wavefunction and superpositions 
    4. Wavefunction properties 
    5. Particle in a potential well 
    6. The δ-function potential 
  4. Quantum harmonic oscillator and scattering 
    1. Harmonic oscillator 
    2. Quantum mechanical scattering 
  5. Quantum mechanics beyond 1D 
    1. Particle in a box 
    2. Harmonic oscillator 
    3. 2D potentials with polar coordinates 
  6. Quantization of spin and other angular momenta 
    1. Orbital angular momentum 
    2. Central potentials and application to the Coulomb potential 
    3. Generalized angular momentum operators 
    4. Quantum spin 
  7. Quantum statistics and exchange forces 
    1. Symmetry of the wavefunction 
    2. The Pauli exclusion principle and its range 
    3. Exchange forces due to the Pauli principle 
  8. Periodic potentials and application to solids 
    1. Bloch functions 
    2. Band structure and the Kronig-Penney model 

Descripción

The aim of this book is to provide the reader with an introduction to quantum mechanics, a physical theory which serves as the foundation for some of the most central areas of physics ranging from condensed matter physics to astrophysics. The basic principles of quantum mechanics are explained along with important belonging theorems. We then proceed to discuss arguably the most central equation in quantum mechanics in detail, namely the Schrödinger equation, and how this may be solved and physically interpreted for various systems. A quantum treatment of particle scattering and the harmonic oscillator model is presented. The book covers how to deal with quantum mechanics in 3D systems and explains how quantum statistics and the Pauli principle give rise to exchange forces. Exchange forces have dramatic consequences experimentally and lie at the heart of phenomena such as ferromagnetism in materials. Finally, we apply quantum mechanics to the treatment of angular momentum operators, such as the electron spin, and also discuss how it may be applied to describe energy bands in solids.

About the author

J.L. holds since 2013 a position as Professor of Physics at the Norwegian University of Science and Technology. His research is focused on theoretical quantum condensed matter physics and he has received several prizes for his Ph.D work on the interplay between superconductivity and magnetism. He has also received the American Physical Society ”Outstanding Referee” award, selected among over 60.000 active referees. In teaching courses such as Classical Mechanics and Particle Physics for both undergraduate and graduate students, he has invariably received high scores from the students for his pedagogical qualities and lectures. His webpage is found here.

This website uses cookies to improve user experience. By using our website you consent to all cookies in accordance with EU regulation.